Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Indoor Air ; 32(2): e12989, 2022 02.
Article in English | MEDLINE | ID: covidwho-1714193

ABSTRACT

To optimize strategies for curbing the transmission of airborne pathogens, the efficacy of three key controls-face masks, ventilation, and physical distancing-must be well understood. In this study, we used the Quadrature-based model of Respiratory Aerosol and Droplets to quantify the reduction in exposure to airborne pathogens from various combinations of controls. For each combination of controls, we simulated thousands of scenarios that represent the tremendous variability in factors governing airborne transmission and the efficacy of mitigation strategies. While the efficacy of any individual control was highly variable among scenarios, combining universal mask-wearing with distancing of 1 m or more reduced the median exposure by more than 99% relative to a close, unmasked conversation, with further reductions if ventilation is also enhanced. The large reductions in exposure to airborne pathogens translated to large reductions in the risk of initial infection in a new host. These findings suggest that layering controls is highly effective for reducing transmission of airborne pathogens and will be critical for curbing outbreaks of novel viruses in the future.


Subject(s)
Air Microbiology , Air Pollution, Indoor , COVID-19 , Aerosols , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , Humans , SARS-CoV-2 , Ventilation
2.
Indoor Air ; 31(6): 1843-1859, 2021 11.
Article in English | MEDLINE | ID: covidwho-1322739

ABSTRACT

Some infectious diseases, such as influenza, tuberculosis, and SARS-CoV-2, may be transmitted when virus-laden particles expelled from an infectious person are inhaled by someone else, which is known as the airborne transmission route. These virus-laden particles are more concentrated in the expiratory jet of an infectious person than elsewhere in a well-mixed room, but this near-field enhancement in virion exposure has not been well quantified. Transmission of airborne viruses depends on factors that are inherently variable and, in many cases, poorly constrained, and quantifying this uncertainty requires large ensembles of model simulations that span the variability in input parameters. However, models that are well-suited to simulate the near-field evolution of respiratory particles are also computationally expensive, which limits the exploration of parametric uncertainty. In order to perform many simulations that span the wide variability in factors governing airborne transmission, we developed the Quadrature-based model of Respiratory Aerosol and Droplets (QuaRAD). QuaRAD is an efficient framework for simulating the evolution of virus-laden particles after they are expelled from an infectious person, their deposition to the nasal cavity of a susceptible person, and the subsequent risk of initial infection. We simulated 10 000 scenarios to quantify the risk of initial infection by a particular virus, SARS-CoV-2. The predicted risk of infection was highly variable among scenarios and, in each scenario, was strongly enhanced near the infectious individual. In more than 50% of scenarios, the physical distancing needed to avoid near-field enhancements in airborne transmission was beyond the recommended safe distance of two meters (six feet) if the infectious person is not wearing a mask, though this distance defining the near-field extent was also highly variable among scenarios; the variability in the near-field extent is explained predominantly by variability in expiration velocity. Our findings suggest that maintaining at least two meters of distance from an infectious person greatly reduces exposure to airborne virions; protections against airborne transmission, such as N95 respirators, should be available when distancing is not possible.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Air Microbiology , COVID-19/transmission , Computer Simulation , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL